Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3812-3822, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358300

RESUMO

Fog harvesting is considered a promising freshwater collection strategy for overcoming water scarcity, because of its environmental friendliness and strong sustainability. Typically, fogging occurs briefly at night and in the early morning in most arid and semiarid regions. However, studies on water collection from short-term fog are scarce. Herein, we developed a patterned surface with highly hydrophilic interconnected microchannels on a superhydrophobic surface to improve droplet convergence driven by the Young-Laplace pressure difference. With a rationally designed surface structure, the optimized water collection rate from mild fog could reach up to 67.31 g m-2 h-1 (6.731 mg cm-2 h-1) in 6 h; this value was over 130% higher than that observed on the pristine surface. The patterned surface with interconnected microchannels significantly shortened the startup time, which was counted from the fog contact to the first droplet falling from the fog-harvesting surface. The patterned surface was also facilely prepared via a controllable strategy combining laser ablation and chemical vapor deposition. The results obtained in outdoor environments indicate that the rationally designed surface has the potential for short-term fog harvesting. This work can be considered as a meaningful attempt to address the practical issues encountered in fog-harvesting research.


Assuntos
Água Doce , Água , Gases , Pressão , Tempo (Meteorologia) , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Omega ; 6(33): 21784-21791, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34471780

RESUMO

The integral catalytic impeller can simultaneously improve reaction efficiency and avoid the problem of catalyst separation, which has great potential in applying heterogeneous catalysis. This paper introduced a strategy of combining electroless copper plating with 3D printing technology to construct a pluggable copper-based integral catalytic agitating impeller (Cu-ICAI) and applied it to the catalytic reduction of 4-nitrophenol (4-NP). The obtained Cu-ICAI exhibits very excellent catalytic activity. The 4-NP conversion rate reaches almost 100% within 90 s. Furthermore, the Cu-ICAI can be easily pulled out from the reactor to be repeatedly used more than 15 times with high performance. Energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy characterizations show that the catalyst obtained by electroless copper plating is a ternary Cu-Cu2O-CuO composite catalyst, which is conducive to the electron transfer process. This low-cost, facile, and versatile strategy, combining electroless plating and 3D printing, may provide a new idea for the preparation of the integral impeller with other metal catalytic activities.

3.
J Nanosci Nanotechnol ; 10(9): 5864-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21133117

RESUMO

The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...